Placental Stem Cell Transplant Improves PKU Symptoms in Mice

Kristen J. Skvorak, Ph.D.
Postdoctoral Fellow
University of Pittsburgh Med Center, Pediatrics
Mentors: Dr. Stephen Strom and Dr. Jerry Vockley

NPKUA Conference
Salt Lake City, UT
July 10-13, 2014
Current Treatments

- Physiological / non-physiological amino acid therapy
- Phe-restricted diet
 - Lifelong strict compliance
 - Expensive
 - Taste?
- BH4 (Kuvan™) supplementation
 - Expensive
 - Does not work for everyone
- PEG-PAL
 - Phase 2 clinical trials
- Gene Therapy
- Cell Transplant
 - Liver cells
 - Placental cells

A Mouse Model of PKU

Hi, I have PKU!
A mouse model of PKU

- No enzyme activity
- ↑ Phe in the blood, organs, and brain
- Disruptions in brain amino acids / neurotransmitters
- Hypopigmented (fur changes from black to light brown)
A mouse model of PKU

- No enzyme activity
- ↑ Phe in the blood, organs, and brain
- Disruptions in brain amino acids / neurotransmitters
- Hypopigmented (fur changes from black to light brown)
- Smaller than healthy siblings
- Cognitive (memory, learning) problems
- Offspring of PKU moms suffer defects similar to human maternal PKU

PKUenu² mouse is a great model for human PKU.
Previous Studies – Liver Cell Transplant
Benefits of Liver Cell Transplant

1. **Less** expensive (5-10% the cost of liver transplant)

2. **Less** invasive, fast recovery (several infusions over 24-48h)

3. **Fewer** incidents of serious complications

4. Transplanted cells are from "recycled" livers - Still relying on donor livers (limited) - lifelong(?) immunosuppression

5. Transplanted cells only have **ONE JOB** - If cells fail, the patient would only go back to the condition he/she was in before undergoing cell transplant.
Liver Cell Transplant and Disease

• **Animal models of disease**
 – Crigler-Najjar
 – Maple Syrup Urine Disease (K. Skvorak)
 – **PKU** (C. Harding, K. Skvorak)
 – Glycogen storage disease
 – Wilson’s Disease

• **Patients – bridge therapy and beyond**
 – **PKU** (ongoing clinical trial, Children’s Hospital of Pittsburgh)
 – Crigler-Najjar (1998)
 – Glycogen storage disease
 – Ornithine Transcarbamylase (OTC) deficiency
 – Factor VII deficiency
 – Biliary Atresia
 – Additional Urea Cycle disorders
 – Liver failure (1997)
Placental Stem Cells: Amnion Epithelial (AE) Cells
Amnion – thin membrane surrounding the fetus during pregnancy

Epithelium – cells that line the inner and outer body surfaces

- Acquired after **full term birth**
 - **Plentiful** – C-sections account for a third of all births in the USA
- **Easy** to isolate, easy to grow in the lab
- Non-controversial source of stem cells
- **Not** cord blood cells
- Anti-fibrotic, anti-inflammatory, and anti-microbial characteristics
- Can “hide” from the immune system
- Freeze/thaw well
 - Cell banking potential
Procedure and Rationale

- Healthy donor cells have normal enzyme activity
 - <10% activity: more manageable disease; increased protein tolerance
 - 10-20% activity: potential cure (Harding & Gibson, 2010)

- Treatment at birth – clinically relevant to treat this way

- No surgery required (mice)
 - Clearly see the liver through the skin

- Newborn mouse livers are rapidly growing
Previous Results – MSUD mouse

After AE cell transplant:

- Growth rate was normalized
- Survival was significantly lengthened
- Enzyme activity was doubled (6% to 13%)
- Leucine was normalized, neurotransmitters were significantly improved
Isolate human amnion epithelial cells (hAE)

1 million cells/mouse transplanted directly to liver (birth)

hAEC Tx

7 days 14 days 21 days 28 days

PAHenu^2 (birth)

On normal diet

No immunosuppression

1 month post-tx (young adult)

100 days Post-tx

AA Analysis (blood/brain)
Neurotransmitters
PAH activity
Human DNA in mouse liver
Results – Blood Phe Improvement

- Male vs Female
- ~25% reduction
- ~60% reduction

Statistics
* = p<0.05
** = p<0.01
*** = p<0.001
Results – Brain Phe Improvement

- Male + Female
- ~60% reduction
- NORMALIZED!

Statistics
* = p<0.05
** = p<0.01
*** = p<0.001
Results - Neurotransmitter Improvement

Phe → Tyrosine → Dopamine → DOPAC → HVA → 3-MT

Also Normalized: Taurine, Glycine, Aspartate

PAH

50% 20% NS = not statistically different from control mice
Summary

1. Cell therapy was tested in a mouse model of PKU
 – Mouse liver cells and human placental stem cells

2. Blood and Brain Phe with cell transplant
 – Brain Phe was normalized with placental stem cells

3. Additional corrections in brain (Neurotransmitters!)

4. Viable alternative therapy for PKU (and other liver-based metabolic diseases)
 – Placental stem cells are a non-controversial source of cells, which has immunomodulatory properties
Acknowledgements

University of Pittsburgh, PA
Jerry Vockley, MD, PhD

Kansas University Med. Center, KS
Kenneth Dorko

University of Cagliari, Cagliari, Italy
Fabio Marongiu, PhD

Yale University Medical School, CT
Marc Hansel, PhD

University of Iowa Health Care
Veysel Tahan, MD

Washington State University, WA
K. Michael Gibson, PhD

Baylor Research Institute, TX
Erland Arning, PhD
Teodoro Bottiglieri, PhD

Karolinska Institutet, Stockholm, Sweden
Stephen Strom, PhD
Roberto Gramignoli, PhD

Funding
National PKU Alliance

The Strom Lab in Pittsburgh
Thank you!
Questions?